An Improved PSO Algorithm for Optimized Material Scheduling in Emergency Relief

Author:

Li Tang123ORCID,Yaping Li24ORCID

Affiliation:

1. Anhui Finance & Trade Vocational College, Hefei, Anhui 230601, China

2. Party School of Anhui Provincial Committee of the Communist Party of China (Anhui Academy of Governance), Hefei 230022, Anhui, China

3. Anhui Economic Management Institute, Hefei, Anhui 230059, China

4. School of Management, Hefei University of Technology, Hefei, Anhui 230009, China

Abstract

Efficient emergency material dispatch, amid the aftermath of an emergency event, can help control the spread of the disaster and reduce disaster losses. Herewith, we propose a model with the urgency of material demand as the target coefficient, and the minimum load time and the minimum transportation cost as the total cost. For this model, an improved particle swarm optimization (PSO) algorithm is proposed as the means to optimize the initial positions of particles with good point sets and improve the convergence speed with adaptive dynamic weights to improve the optimization of the emergency material dispatch model. In order to verify the effectiveness of the proposed model and algorithm improvement strategy, the experimental results are verified by means of simulation experiments and algorithm comparison experiments, which show that the proposed emergency material dispatch model and the improved PSO algorithm cannot only solve the post-disaster relief material distribution and dispatching problem but also effectively reduce the total cost of emergency material dispatching.

Funder

Research Fund of the Philosophy and Social Science Planning Project of Anhui Province, China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Integrated Emergency Vehicle Scheduling Model in Urban Emergency Rescue within a Time-Limited Period;Transportation Research Record: Journal of the Transportation Research Board;2023-12-13

2. Optimization models and solving approaches in relief distribution concerning victims’ satisfaction: A review;Applied Soft Computing;2023-08

3. Energy Dispatching Based on an Improved PSO-ACO Algorithm;International Journal of Intelligent Systems;2023-02-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3