Dynamics of Unsteady Flow of Chemically Reactive Upper-Convected Maxwell Fluid with Temperature-Dependent Viscosity: Keller Box Analysis

Author:

Ullah Zia1,Yasmin Samina1,Younis Jihad2ORCID,Abdullah Ameer1,Abbas Shahid1,Shah Asif1

Affiliation:

1. Department of Mathemtics, University of Lahore, Sargodha Campus, Sargodha, Pakistan

2. Aden University, Khormaksar, P. O. Box 6014, Aden, Yemen

Abstract

The heat and mass transfer characteristics of unsteady flow of incompressible chemically reactive upper-convected Maxwell fluid along a stretching surface in the presence of temperature-dependent viscosity has been studied. The theoretical analysis on heat and mass transfer over a stretching sheet is investigated for numerical analysis. With the use of stream function formulation, the governing boundary layer equations of momentum, energy, and concentration are reduced to a set of linked ordinary differential equations. The nonlinear ordinary differential equations are then solved numerically by using the Keller Box method. The physical behavior of governing parameters on velocity, temperature, and concentration profiles and the local skin friction coefficient and heat and mass transfer rates are graphed and tabulated. The physical impact of Maxwell parameter β, unsteadiness parameter M, Schmidt number Sc, Prandtl number Pr, reaction rate parameter γ, and variable viscosity parameter ε on the heat and mass transfer has been examined along the stretching surface numerically. The novelty of the present work is to examine the importance of destructive reaction and contractive reaction on the dynamics of upper-convected Maxwell fluid flow in the presence of temperature-dependent viscosity effects. It is observed an interesting behavior of temperature distribution and concentration profile is noted for lower value of viscosity parameter ε in the presence of chemical reaction. It is also found that skin friction and the rate of heat transfer are decreased by increasing the variable viscosity parameter ε .

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3