The Role of Biomaterials and Biocompatible Materials in Implant-Supported Dental Prosthesis

Author:

Eftekhar Ashtiani Reza1ORCID,Alam Mostafa2ORCID,Tavakolizadeh Sara1ORCID,Abbasi Kamyar1ORCID

Affiliation:

1. Department of Prosthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran

2. Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Abstract

The dental implant is one of the appropriate instances of the different dental materials and their application, which is the combined procedure of technology and science in physics, biomechanics, and surface chemistry from macroscale to nanoscale surface engineering and manufactured technologies. In recent decades, biomaterials in implant therapy promote bone response and biomechanical ability, which is long-term from surgical equipment to final prosthetic restoration. Biomaterials have a crucial role in rehabilitating the damaged structure of the tooth and supplying acceptable outcomes correlated with clinical performance. There are some challenges in implantation such as bleeding, mobility, peri-implant infections, and the solution associated with modern strategies which are regarded to biomaterials. Various materials have been known as promising candidates for coatings of dental implants which contain polyhydroxyalkanoates, calcium phosphate, carbon, bisphosphonates, hydroxyapatite, bone stimulating factors, bioactive glass, bioactive ceramics, collagen, chitosan, metal and their alloys, fluoride, and titanium/titanium nitride. It is pivotal that biomaterials should be biodegradable; for example, polyhydroxyalkanoates are biodegradable; also, they do not have bad effects on tissues and cells. Despite this, biomaterials have important roles in prosthetic conditions such as dental pulp regeneration, the healing process, and antibacterial and anti-inflammatory effects. In this review study, the role of biocompatible materials in dental implants is investigated in in vitro and in vivo studies.

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3