An Efficient Processing of Join Queries for Sensor Networks Using Column-Oriented Databases

Author:

Kim Kyung-Chang1

Affiliation:

1. Department of Computer Engineering, Hongik University, Seoul 121-791, Republic of Korea

Abstract

Recently, the sensor network area is gaining attention both in the industry and academia. Many applications of sensor network such as vehicle tracking and environmental monitoring require joining sensor data scattered over the network. The main performance criterion for queries in a sensor network is to minimize the battery power consumption in each sensor node. Hence, reducing the communication cost of shipping data among sensor nodes is important since it is the main consumer of battery power. In this paper, we propose a technique for join queries in a sensor network that minimizes communication cost. For storage of sensor data, we use a column-oriented database that stores data on disk (or in memory) column-by-column unlike traditional database that store data in rows. The justification for using a column-oriented database technique is not to ship those data columns that do not participate in the actual join. We compare our algorithm with existing join algorithms for sensor networks that are based on traditional row-oriented databases. The performance analysis show that our proposed algorithm based on column-oriented databases outperforms existing algorithms in processing binary equi-join (BEJ) queries for sensor networks.

Funder

National Research Foundation of Korea

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient iceberg join processing in wireless sensor networks;International Journal of Embedded Systems;2017

2. Advanced verification on WBAN and cloud computing for u-health environment;Multimedia Tools and Applications;2014-05-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3