Affiliation:
1. School of Computer Science, China University of Geosciences, Wuhan 430078, China
2. Hubei Key Laboratory of Intelligent Geo-Information Processing, Wuhan 430078, China
Abstract
After the production of printed circuit boards (PCB), PCB manufacturers need to remove defected boards by conducting rigorous testing, while manual inspection is time-consuming and laborious. Many PCB factories employ automatic optical inspection (AOI), but this pixel-based comparison method has a high false alarm rate, thus requiring intensive human inspection to determine whether alarms raised from it resemble true or pseudo defects. In this paper, we propose a new cost-sensitive deep learning model: cost-sensitive siamese network (CSS-Net) based on siamese network, transfer learning and threshold moving methods to distinguish between true and pseudo PCB defects as a cost-sensitive classification problem. We use optimization algorithms such as NSGA-II to determine the optimal cost-sensitive threshold. Results show that our model improves true defects prediction accuracy to 97.60%, and it maintains relatively high pseudo defect prediction accuracy, 61.24% in real-production scenario. Furthermore, our model also outperforms its state-of-the-art competitor models in other comprehensive cost-sensitive metrics, with an average of 33.32% shorter training time.
Subject
General Mathematics,General Medicine,General Neuroscience,General Computer Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献