Affiliation:
1. School of Construction Machinery, Chang’an University, Xi’an 710064, China
2. Xi’an University of Science and Technology, Xi’an 710054, China
Abstract
Firstly, a genetic algorithm (GA) and simulated annealing (SA) optimized fuzzy c-means clustering algorithm (FCM) was proposed in this paper, which was developed to allow for a clustering analysis of the massive concrete cube specimen compression test data. Then, using an optimized error correction time series estimation method based on the wavelet neural network (WNN), a concrete cube specimen compressive strength test data estimation model was constructed. Taking the results of cluster analysis as data samples, the short-term accurate estimation of concrete quality was carried out. It was found that the mean absolute percentage error, e1, and the root mean square error, e2, for the samples were 6.03385% and 3.3682KN, indicating that the proposed method had higher estimation accuracy and was suitable for concrete compressive test data short-term quality estimations.
Funder
Fundamental Research Funds for the Central Universities
Subject
General Engineering,General Mathematics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献