A Real-Time Vehicle Counting, Speed Estimation, and Classification System Based on Virtual Detection Zone and YOLO

Author:

Lin Cheng-Jian12ORCID,Jeng Shiou-Yun3,Lioa Hong-Wei1

Affiliation:

1. Department of Computer Science and Information Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan

2. College of Intelligence, National Taichung University of Science and Technology, Taichung 404, Taiwan

3. Department of Business Administration, Asia University, Taichung 413, Taiwan

Abstract

In recent years, vehicle detection and classification have become essential tasks of intelligent transportation systems, and real-time, accurate vehicle detection from image and video data for traffic monitoring remains challenging. The most noteworthy challenges are real-time system operation to accurately locate and classify vehicles in traffic flows and working around total occlusions that hinder vehicle tracking. For real-time traffic monitoring, we present a traffic monitoring approach that overcomes the abovementioned challenges by employing convolutional neural networks that utilize You Only Look Once (YOLO). A real-time traffic monitoring system has been developed, and it has attracted significant attention from traffic management departments. Digitally processing and analyzing these videos in real time is crucial for extracting reliable data on traffic flow. Therefore, this study presents a real-time traffic monitoring system based on a virtual detection zone, Gaussian mixture model (GMM), and YOLO to increase the vehicle counting and classification efficiency. GMM and a virtual detection zone are used for vehicle counting, and YOLO is used to classify vehicles. Moreover, the distance and time traveled by a vehicle are used to estimate the speed of the vehicle. In this study, the Montevideo Audio and Video Dataset (MAVD), the GARM Road-Traffic Monitoring data set (GRAM-RTM), and our collection data sets are used to verify the proposed method. Experimental results indicate that the proposed method with YOLOv4 achieved the highest classification accuracy of 98.91% and 99.5% in MAVD and GRAM-RTM data sets, respectively. Moreover, the proposed method with YOLOv4 also achieves the highest classification accuracy of 99.1%, 98.6%, and 98% in daytime, night time, and rainy day, respectively. In addition, the average absolute percentage error of vehicle speed estimation with the proposed method is about 7.6%.

Funder

Ministry of Science and Technology of the People's Republic of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3