Health Recognition Algorithm for Sports Training Based on Bi-GRU Neural Networks

Author:

Nie Qi1,Li Yun1,Xiong Wen Ying1,Xu Wei1ORCID

Affiliation:

1. College of Physical Education and Health, Jiangxi University of Traditional Chinese Medicine, Nanchang 330000, China

Abstract

The healthcare benefits associated with regular physical activity recognition and monitoring have been considered in several research studies. Regular recognition and monitoring of health status can potentially assist in managing and reducing the risk of many diseases such as cardiovascular disease, diabetes, and obesity. Using healthcare equipment in hospitals, people can conduct regular physical examinations to check their health status. However, most of the time, it is difficult to reach a specific medical environment and use special medical equipment. In this paper, a deep learning framework based on the bidirectional gated recurrent unit for health status recognition is implemented to improve the accuracy by making full use of the information provided by smartphone acceleration sensors. A model based on a bidirectional gated recurrent unit is constructed to describe the relationship between input acceleration signals and output information through a gating approach. Therefore, it can automatically detect the health status of the sportsman as healthy, subhealthy, and unhealthy. Finally, the practical data collected from an athlete have been used to evaluate the recognition performance of the system. Results show that the proposed methodology can predicate the sports health status accurately.

Funder

Jiangxi University Humanities and Social Science Research Project

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3