Affiliation:
1. College of Physical Education and Health, Jiangxi University of Traditional Chinese Medicine, Nanchang 330000, China
Abstract
The healthcare benefits associated with regular physical activity recognition and monitoring have been considered in several research studies. Regular recognition and monitoring of health status can potentially assist in managing and reducing the risk of many diseases such as cardiovascular disease, diabetes, and obesity. Using healthcare equipment in hospitals, people can conduct regular physical examinations to check their health status. However, most of the time, it is difficult to reach a specific medical environment and use special medical equipment. In this paper, a deep learning framework based on the bidirectional gated recurrent unit for health status recognition is implemented to improve the accuracy by making full use of the information provided by smartphone acceleration sensors. A model based on a bidirectional gated recurrent unit is constructed to describe the relationship between input acceleration signals and output information through a gating approach. Therefore, it can automatically detect the health status of the sportsman as healthy, subhealthy, and unhealthy. Finally, the practical data collected from an athlete have been used to evaluate the recognition performance of the system. Results show that the proposed methodology can predicate the sports health status accurately.
Funder
Jiangxi University Humanities and Social Science Research Project
Subject
Health Informatics,Biomedical Engineering,Surgery,Biotechnology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献