Affiliation:
1. School of Computer, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
Abstract
Fraud detection is one of the core issues of loan risk control, which aims to detect fraudulent loan applications and safeguard the property of both individuals and organizations. Because of its close relevance to the security of financial operations, fraud detection has received widespread attention from industry. In recent years, with the rapid development of artificial intelligence technology, an automatic feature engineering method that can help to generate features has been applied to fraud detection with good results. However, in car loan fraud detection, the existing methods do not satisfy the requirements because of overreliance on behavioral features. To tackle this issue, this paper proposed an optimized deep feature synthesis (DFS) method in the automatic feature engineering scheme to improve the car loan fraud detection. Problems like feature dimension explosion, low interpretability, long training time, and low detection accuracy are solved by compressing abstract and uninterpretable features to limit the depth of DFS algorithm. Experiments are developed based on actual car loan credit database to evaluate the performance of the proposed scheme. Compared with traditional automatic feature engineering methods, the number of features and training time are reduced by 92.5% and 54.3%, respectively, whereas accuracy is improved by 23%. The experiment demonstrates that our scheme effectively improved the existing automatic feature engineering car loan fraud detection methods.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献