Website Fingerprinting Attacks Based on Homology Analysis

Author:

Guo Maohua1ORCID,Fei Jinlong1ORCID

Affiliation:

1. State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou 450002, China

Abstract

Website fingerprinting attacks allow attackers to determine the websites that users are linked to, by examining the encrypted traffic between the users and the anonymous network portals. Recent research demonstrated the feasibility of website fingerprinting attacks on Tor anonymous networks with only a few samples. Thus, this paper proposes a novel small-sample website fingerprinting attack method for SSH and Shadowsocks single-agent anonymity network systems, which focuses on analyzing homology relationships between website fingerprinting. Based on the latter, we design a Convolutional Neural Network-Bidirectional Long Short-Term Memory (CNN-BiLSTM) attack classification model that achieves 94.8% and 98.1% accuracy in classifying SSH and Shadowsocks anonymous encrypted traffic, respectively, when only 20 samples per site are available. We also highlight that the CNN-BiLSTM model has significantly better migration capabilities than traditional methods, achieving over 90% accuracy when applied on a new set of monitored sites with only five samples per site. Overall, our experiments demonstrate that CNN-BiLSTM is an efficient, flexible, and robust model for website fingerprinting attack classification.

Funder

National Key Research Projects

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Reference32 articles.

1. GANDaLF: GAN for Data-Limited Fingerprinting

2. The utility of packet timing in website fingerprinting attacks;M. S. Rahman,2020

3. Triplet Fingerprinting: More Practical and Portable Website Fingerprinting with N-shot Learning

4. Var-CNN: A Data-Efficient Website Fingerprinting Attack Based on Deep Learning

5. Deep fingerprinting: undermining website fingerprinting defenses with deep learning;P. Sirinam

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3