A Static-Dynamic Hypergraph Neural Network Framework Based on Residual Learning for Stock Recommendation

Author:

Hao Jianlong1ORCID,Liu Zhibin1,Sun Qiwei1,Zhang Chen1,Wang Jie1

Affiliation:

1. School of Information, Shanxi University of Finance and Economics, Taiyuan 030012, China

Abstract

Stock ranking prediction is an effective method for achieving a high investment return and plays a crucial role in investment decisions. However, previous studies have overlooked the interconnections among stocks or have solely relied on predefined graphs for stock relationship information. The predefined graphs may not capture all possible relationships and may not be suitable for describing dynamic relationships. To address these issues, we propose a Static-Dynamic hypergraph neural network framework based on Residual Learning (SD-RL). Compared with traditional methods, SD-RL has the following advantages. (1) Stocks are no longer treated as isolated entities; instead, their static and dynamic relationship information is taken into account. (2) Leveraging the data-driven methodology, SD-RL autonomously learns both the static graph and dynamic hypergraph through dedicated graph learning and hypergraph learning modules, respectively. (3) By employing residual learning, various latent relationship information flows are mined, which enhances the stock embedding’s capacity to capture trends. Extensive experiments on the real data verify the effectiveness of our proposed methods.

Funder

Shanxi University

Publisher

Hindawi Limited

Reference31 articles.

1. Multi-task recurrent neural networks and higher-order Markov random fields for stock price movement prediction: multi-task RNN and higer-order MRFs for stock price classification;C. Li

2. A stock price prediction method based on meta-learning and variational mode decomposition

3. Hierarchical multi-scale Gaussian transformer for stock movement prediction;Q. Ding

4. Temporal Relational Ranking for Stock Prediction

5. Spatiotemporal hypergraph convolution network for stock movement forecasting;R. Sawhney

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3