Evaluation of Threshold Values for Root Canal Filling Voids in Micro-CT and Nano-CT Images

Author:

Orhan Kaan12ORCID,Jacobs Reinhilde23,Celikten Berkan24ORCID,Huang Yan25,de Faria Vasconcelos Karla26,Nicolielo Laura Ferreira Pinheiro2,Buyuksungur Arda7,Van Dessel Jeroen2

Affiliation:

1. Faculty of Dentistry, Department of Dentomaxillofacial Radiology, Ankara University, Ankara, Turkey

2. OMFS IMPATH Research Group, Department of Imaging & Pathology, Faculty of Medicine, University of Leuven and Oral & Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium

3. Oral Facial Diagnostics and Surgery, Department of Dental Medicine, Karolinska Institutet, Solna, Sweden

4. Faculty of Dentistry, Department of Endodontics, Ankara University, Ankara, Turkey

5. State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China

6. Department of Oral Diagnosis, Division of Oral Radiology, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil

7. BIOMATEN, Middle East Technical University, Ankara, Turkey

Abstract

While several materials and techniques have been used to assess the quality of root canal fillings in micro-CT images, the lack of standardization in scanning protocols has produced conflicting results. Hence, the aim of this study was to determine a cutoff voxel size value for the assessment of root canal filling voids in micro-CT and nano-CT images. Twenty freshly extracted mandibular central incisors were used. Root canals were prepared with nickel titanium files to an ISO size 40/0.06 taper and then filled with a single cone (40/0.06 taper) and AH Plus sealer. The teeth were scanned with different voxel sizes with either micro-CT (5.2, 8.1, 11.2, and 16.73 μm) or nano-CT (1.5 and 5.0 μm) equipment. Images were reconstructed and analyzed with the NRecon and CTAn software. Void proportion and void volume were calculated for each tooth in the apical, middle, and coronal thirds of the root canal. Kruskal-Wallis and post hoc Mann–Whitney U tests were performed with a significance level of 5%. In micro-CT images, significantly different results were detected among the tested voxel sizes for void proportion and void volume, whereas no such differences were found in nano-CT images (p>0.05). Micro-CT images showed higher void numbers over the entire root length, with statistically significant differences between the voxel size of 16.73 μm and the other sizes (p<0.05). The values of the different nano-CT voxel sizes did not significantly differ from those of the micro-CT (5.2, 8.1, and 11.2 μm), except for the voxel size of 16.73 μm (p<0.05). All tested voxel sizes enabled the detection of root canal filling voids except for the voxel size of 16.73 μm. Bearing in mind the limitations of this study, it seems that a voxel size of 11.2 μm can be used as a reliable cutoff value for the assessment of root canal filling voids in micro-CT imaging.

Publisher

Hindawi Limited

Subject

Instrumentation,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3