FDM Rapid Prototyping Technology of Complex-Shaped Mould Based on Big Data Management of Cloud Manufacturing

Author:

Cao Yan1ORCID,Huang Liang1ORCID,Bai Yu1ORCID,Fan Qingming1ORCID

Affiliation:

1. School of Mechatronic Engineering, Xi’an Technological University, Xi’an 710021, China

Abstract

In order to solve the problem of high cost and long cycle in the process of traditional subtractive material manufacturing of a complex-shaped mould, the technology of FDM rapid prototyping is used in combination with the global service idea of cloud manufacturing, where the information of various kinds of heterogeneous-forming process data produced in the process of FDM rapid prototyping is analysed. Meanwhile, the transfer and transformation relation of each forming process data information in the rapid manufacturing process with the digital model as the core is clarified, so that the FDM rapid manufacturing process is integrated into one, thus forming a digital and intelligent manufacturing system for a complex-shaped mould based on the cloud manufacturing big data management. This paper takes the investment casting mould of a spur gear as an example. Through research on the forming mechanism of jet wire, the factors affecting forming quality and efficiency is analysed from three stages: the pretreatment of the 3D model, the rapid prototyping, and the postprocessing of the forming parts. The relationship between the forming parameters and the craft quality is thus established, and the optimization schemes at each stage of this process are put forward through the study on the forming mechanism of jet wire. Through a rapid prototyping test, it is shown that the spur face gear master mould based on this technology can be quickly manufactured with a critical surface accuracy within a range of 0.036 mm–0.181 mm and a surface roughness within the range of 0.007–0.01 μm by only 1/3 the processing cycle of traditional subtractive material manufacturing. It lays a solid foundation for rapid intelligent manufacturing of products with a complex-shaped structure.

Funder

Shaanxi Special Processing Key Laboratory

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3