Affiliation:
1. CGANT Research Group, University of Jember, Indonesia
2. Department of Mathematics, University of Jember, Indonesia
3. Department of Mathematics Education, University of Jember, Indonesia
4. Department of Elementary School Teacher Education, University of Jember, Indonesia
5. Combinatorial and Applied Mathematics Research Group, University of Tadulako, Indonesia
Abstract
A simple graph G=(V,E) is said to be an H-covering if every edge of G belongs to at least one subgraph isomorphic to H. A bijection f:V∪E→{1,2,3,…,V+E} is an (a,d)-H-antimagic total labeling of G if, for all subgraphs H′ isomorphic to H, the sum of labels of all vertices and edges in H′ form an arithmetic sequence {a,a+d,…,(k-1)d} where a>0, d≥0 are two fixed integers and k is the number of all subgraphs of G isomorphic to H. The labeling f is called super if the smallest possible labels appear on the vertices. A graph that admits (super) (a,d)-H-antimagic total labeling is called (super) (a,d)-H-antimagic. For a special d=0, the (super) (a,0)-H-antimagic total labeling is called H-(super)magic labeling. A graph that admits such a labeling is called H-(super)magic. The m-shadow of graph G, Dm(G), is a graph obtained by taking m copies of G, namely, G1,G2,…,Gm, and then joining every vertex u in Gi, i∈{1,2,…,m-1}, to the neighbors of the corresponding vertex v in Gi+1. In this paper we studied the H-supermagic labelings of Dm(G) where G are paths and cycles.
Funder
CGANT University of Jember
Subject
Mathematics (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献