Evaluation of Transportation Network Reliability under Emergency Based on Reserve Capacity

Author:

Zhang Xiongfei1ORCID,Zhong Qi2,Luo Qin1ORCID

Affiliation:

1. College of Urban Traffic and Logistics, Shenzhen Technology University, Shenzhen 518118, China

2. College of Urban Rail Transit, Shenzhen University, Shenzhen 518060, China

Abstract

There are differences between the requirements for traffic network for traffic demand in daily and emergency situations. In order to evaluate how the network designed for daily needs can meet the surging demand for emergency evacuation, the concept of emergency reliability and corresponding evaluation method is proposed. This paper constructs a bilevel programming model to describe the proposed problem. The upper level problem takes the maximum reserve capacity multiplier as the optimization objective and considers the influence of reversible lane measures taken under emergency conditions. The lower level model adopts the combined traffic distribution/assignment model with capacity limits, to describe evacuees’ path and shelter choice behavior under emergency conditions and take into account the traits of crowded traffic. An iterative optimization method is proposed to solve the upper level model, and the lower level model is transformed into a UE assignment problem with capacity limits over a network of multiple origins and single destination, by adding a dummy node and several dummy links in the network. Then a dynamic penalty function algorithm is used to solve the problem. In the end, numerical studies and results are provided to demonstrate the rationality of the proposed model and feasibility of the proposed solution algorithms.

Funder

Natural Science Foundation of Guangdong Province

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3