Comparison of Two Bayesian Methods in Evaluation of the Absence of the Gold Standard Diagnostic Tests

Author:

Li Taishun1,Liu Pei1ORCID

Affiliation:

1. Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, 87 Ding Jiaqiao Rd., Nanjing 210009, China

Abstract

Objective. The Bayesian model plays an important role in diagnostic test evaluation in the absence of the gold standard, which used the external prior distribution of a parameter combined with sample data to yield the posterior distribution of the test characteristics. However, the correlation between diagnostic tests has always been a problem that cannot be ignored in the Bayesian model evaluation. This study will discuss how different Bayesian model, correlation scenarios, and prior distribution affect the outcome. Methods. The data analyzed in this study was gathered during studies of patients presenting to the Nanjing Chest Hospital with suspected tuberculosis. The diagnostic character of T-SPOT.Tb and KD38 tuberculosis antibody test were evaluated in different Bayesian model, and discharge diagnosis as a gold standard was used to verify the model results in the end. Result. The comparison of four models under the conditional independence situation found that Bayesian probabilistic constraint model was consistent with the Conditional Covariance Bayesian model. The results were mainly affected by prior information. The sensitivity and specificity of the two tests in Conditional Covariance Bayesian model in prior constraint situation were considerably higher than the Bayesian probabilistic constraint model in prior constraint situation. The results of the four models under the conditional dependence situation were similar to the conditional independence situation; pD was also negative with no prior constraint situation in both model Bayesian probabilistic constraint model and Conditional Covariance Bayesian model. The Deviance Information Criterion of Bayesian probabilistic constraint model was close to model Conditional Covariance Bayesian model, but pD of Conditional Covariance Bayesian model in Prior constraint situation (pD=2.40) was higher than the Bayesian probabilistic constraint model in Prior constraint situation (pD=1.66). Conclusion. The result of Conditional Covariance Bayesian model in prior constraint with conditional independence situation was closest to the result of gold standard evaluation in our data. Both of the two Bayesian methods are the feasible way for the evaluation of diagnostic test in the absence of the gold standard diagnostic. Prior source, priority number, and conditional dependencies should be considered in the method selection, the accuracy of posterior estimation mainly depending on the prior distribution.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3