Intestinal Absorption Profile of Three Polygala Oligosaccharide Esters in Polygalae Radix and the Effects of Other Components in Polygalae Radix on Their Absorption

Author:

Ba YinYing1ORCID,Wang MengLin1,Zhang KunFeng1,Chen QiJun1,Wang JiaJia1,Lv Hang2,Jiang YanYan2,Shi Renbing2ORCID

Affiliation:

1. School of Traditional Chinese Medicine, Capital Medical University, No. 10, Toutiao, You-An-Men-Wai Street, Beijing 100069, China

2. School of Chinese Pharmacy, Beijing University of Chinese Medicine, No. 11, Beisanhuan Dong Street, Beijing 100013, China

Abstract

Oligosaccharide esters, which are among the main active components of Polygalae Radix (PR), demonstrate significant pharmacological activities in the human nervous system. In our previous research, some other constituents in PR were able to improve the bioavailability of oligosaccharide esters such as sibiricose A5 (SA5), sibiricose A6 (SA6), and 3,6′-disinapoyl sucrose (DISS), but the related components and their underlying mechanisms remain unknown. The present study aimed to investigate the intestinal absorptive profile of SA5, SA6, and DISS and the absorptive behavior influenced by the coadministration of polygalaxanthone III and total saponins of PR (TS) using an in vitro everted rat gut sac model, along with the possible mechanisms that may influence absorption. The results showed that TS could significantly enhance the absorption of SA5, SA6, and DISS monomers. Verapamil, a P-glycoprotein inhibitor, was able to elevate the absorption of SA5 and SA6, and an absorption experiment using Rho123 led us to conclude that TS influenced the absorption of SA5 and SA6 in a manner similar to that of a P-glycoprotein inhibitor. Sodium caprate, a paracellular absorption enhancer, was found to increase the absorption of SA5, SA6, and DISS. Results showed that the absorption mechanisms of SA5 and SA6 may combine active transport with paracellular passive penetration, while DISS’s absorption was dominated by paracellular passive penetration. However, the relationship between polygala saponins and the absorption of SA5, SA6, and DISS by paracellular passive penetration remain to be examined. This is the direction of our future research.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3