Treadmill Exercise Induces Hippocampal Astroglial Alterations in Rats

Author:

Bernardi Caren1,Tramontina Ana Carolina2,Nardin Patrícia2,Biasibetti Regina2,Costa Ana Paula2,Vizueti Adriana Fernanda2,Batassini Cristiane2,Tortorelli Lucas Silva2,Wartchow Krista Minéia2,Dutra Márcio Ferreira2,Bobermin Larissa2,Sesterheim Patrícia2,Quincozes-Santos André2,de Souza Jaqueline2,Gonçalves Carlos Alberto12

Affiliation:

1. Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 90046-900 Porto Alegre, RS, Brazil

2. Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, 90035-003 Porto Alegre, RS, Brazil

Abstract

Physical exercise effects on brain health and cognitive performance have been described. Synaptic remodeling in hippocampus induced by physical exercise has been described in animal models, but the underlying mechanisms remain poorly understood. Changes in astrocytes, the glial cells involved in synaptic remodeling, need more characterization. We investigated the effect of moderate treadmill exercise (20 min/day) for 4 weeks on some parameters of astrocytic activity in rat hippocampal slices, namely, glial fibrillary acidic protein (GFAP), glutamate uptake and glutamine synthetase (GS) activities, glutathione content, and S100B protein content and secretion, as well as brain-derived neurotrophic factor (BDNF) levels and glucose uptake activity in this tissue. Results show that moderate treadmill exercise was able to induce a decrease in GFAP content (evaluated by ELISA and immunohistochemistry) and an increase in GS activity. These changes could be mediated by corticosterone, whose levels were elevated in serum. BDNF, another putative mediator, was not altered in hippocampal tissue. Moreover, treadmill exercise caused a decrease in NO content. Our data indicate specific changes in astrocyte markers induced by physical exercise, the importance of studying astrocytes for understanding brain plasticity, as well as reinforce the relevance of physical exercise as a neuroprotective strategy.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Publisher

Hindawi Limited

Subject

Clinical Neurology,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3