Affiliation:
1. School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China
Abstract
The method of moments is employed to predict the evolution of aerosol particles in the rainfall process. To describe the dynamic properties of particle size distribution, the population balance equation is converted to moment equations by the method of moments and the converted equations are solved numerically. The variations of particle number concentration, geometric mean diameter, and geometric standard deviation are given in the cases that the Brownian diffusion and inertial impaction of particles dominate, respectively. The effects of raindrop size distribution on particle size distribution are analyzed in nine cases. The results show that the particle number concentration decreases as time goes by, and particles dominated by Brownian diffusion are removed more significantly. The particle number concentration decreases much more rapidly when particle geometric mean diameter is smaller, and the particle size distribution tends to be monodisperse. For the same water content, the raindrops with small geometric mean diameters can remove particles with much higher efficiency than those with large geometric mean diameters. Particles in the “Greenfield gap” are relatively difficult to scavenge, and a new method is needed to remove it from the air.
Funder
National Natural Science Foundation of China
Subject
Applied Mathematics,Analysis
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献