An Algebraic Programming Style for Numerical Software and Its Optimization

Author:

Dinesh T.B.1,Haveraaen Magne2,Heering Jan3

Affiliation:

1. Academic Systems Corporation, 444 Castro Street, Mountain View, CA 94041, USA

2. Department of Informatics, University of Bergen, Høyteknologisenteret, N-5020 Bergen, Norway

3. Department of Software Engineering, CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

Abstract

The abstract mathematical theory of partial differential equations (PDEs) is formulated in terms of manifolds, scalar fields, tensors, and the like, but these algebraic structures are hardly recognizable in actual PDE solvers. The general aim of the Sophus programming style is to bridge the gap between theory and practice in the domain of PDE solvers. Its main ingredients are a library of abstract datatypes corresponding to the algebraic structures used in the mathematical theory and an algebraic expression style similar to the expression style used in the mathematical theory. Because of its emphasis on abstract datatypes, Sophus is most naturally combined with object-oriented languages or other languages supporting abstract datatypes. The resulting source code patterns are beyond the scope of current compiler optimizations, but are sufficiently specific for a dedicated source-to-source optimizer. The limited, domain-specific, character of Sophus is the key to success here. This kind of optimization has been tested on computationally intensive Sophus style code with promising results. The general approach may be useful for other styles and in other application domains as well.

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the use of an algebraic language interface for waveform definition;Analog Integrated Circuits and Signal Processing;2012-07-26

2. Interfacing Concepts;Electronic Notes in Theoretical Computer Science;2010-09

3. A grid-free abstraction of the Navier-Stokes equations in Fortran 95/2003;ACM Transactions on Mathematical Software;2008-01

4. On minimizing materializations of array-valued temporaries;ACM Transactions on Programming Languages and Systems;2006-11

5. Domain-Specific Optimisation with User-Defined Rules in CodeBoost;Electronic Notes in Theoretical Computer Science;2003-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3