Detrended Fluctuation Analysis and Hough Transform Based Self-Adaptation Double-Scale Feature Extraction of Gear Vibration Signals

Author:

Wang JiaQing1,Xiao Han1,Lv Yong1,Wang Tao1,Xu Zengbing1

Affiliation:

1. Hubei Province Key Lab of Machine Transmission and Manufacturing Engineering, Wuhan University of Science and Technology, P.O. Box 222, Wuhan, Hubei 430081, China

Abstract

This paper presents the analysis of the vibration time series of a gear system acquired by piezoelectric acceleration transducer using the detrended fluctuation analysis (DFA). The experimental results show that gear vibration signals behave as double-scale characteristics, which means that the signals exhibit the self-similarity characteristics in two different time scales. For further understanding, the simulation analysis is performed to investigate the reasons for double-scale of gear’s fault vibration signal. According to the analysis results, a DFA double logarithmic plot based feature vector combined with scale exponent and intercept of the small time scale is utilized to achieve a better performance of fault identification. Furthermore, to detect the crossover point of two time scales automatically, a new approach based on the Hough transform is proposed and validated by a group of experimental tests. The results indicate that, comparing with the traditional DFA, the faulty gear conditions can be identified better by analyzing the double-scale characteristics of DFA. In addition, the influence of trend order of DFA on recognition rate of fault gears is discussed.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3