Ensemble Learning Based Multiple Kernel Principal Component Analysis for Dimensionality Reduction and Classification of Hyperspectral Imagery

Author:

Binol Hamidullah1ORCID

Affiliation:

1. Florida International University, Department of Electrical and Computer Engineering, Miami, FL 33174, USA

Abstract

Classification is one of the most challenging tasks of remotely sensed data processing, particularly for hyperspectral imaging (HSI). Dimension reduction is widely applied as a preprocessing step for classification; however the reduction of dimension using conventional methods may not always guarantee high classification rate. Principal component analysis (PCA) and its nonlinear version kernel PCA (KPCA) are known as traditional dimension reduction algorithms. In a previous work, a variant of KPCA, denoted as Adaptive KPCA (A-KPCA), is suggested to get robust unsupervised feature representation for HSI. The specified technique employs several KPCAs simultaneously to obtain better feature points from each applied KPCA which includes different candidate kernels. Nevertheless, A-KPCA neglects the influence of subkernels employing an unweighted combination. Furthermore, if there is at least one weak kernel in the set of kernels, the classification performance may be reduced significantly. To address these problems, in this paper we propose an Ensemble Learning (EL) based multiple kernel PCA (M-KPCA) strategy. M-KPCA constructs a weighted combination of kernels with high discriminative ability from a predetermined set of base kernels and then extracts features in an unsupervised fashion. The experiments on two different AVIRIS hyperspectral data sets show that the proposed algorithm can achieve a satisfactory feature extraction performance on real data.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Detection of apple fruit damages through Raman spectroscopy with cascade forest;Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy;2023-08

2. Hyperspectral image classification using K-plane clustering and kernel principal component analysis;Multimedia Tools and Applications;2023-05-10

3. Hybrid optimal joint spatial-spectral hyperspectral image classification using modified DHO-based GIF with JRKNN;The Imaging Science Journal;2023-03-13

4. Hyperspectral Images: A Succinct Analytical Deep Learning Study;Studies in Big Data;2023

5. An Ensemble Based Model for Detecting Genetically Inherited Disorder;2022 12th International Conference on Advanced Computer Information Technologies (ACIT);2022-09-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3