Tectona grandis Capped Silver-Nanoparticle Material Effects on Microbial Strains Inducing Microbiologically Influenced Corrosion

Author:

Okeniyi Joshua Olusegun12ORCID,Popoola Abimbola Patricia Idowu2ORCID,Ojewumi Modupe Elizabeth3ORCID,Okeniyi Elizabeth Toyin4ORCID,Ikotun Jacob Olumuyiwa5ORCID

Affiliation:

1. Mechanical Engineering Department, Covenant University, Ota, Nigeria

2. Chemical and Metallurgical Engineering Department, Tshwane University of Technology, Pretoria, South Africa

3. Chemical Engineering Department, Covenant University, Ota, Nigeria

4. Petroleum Engineering Department, Covenant University, Ota, Nigeria

5. Department of Civil Engineering and Building, Vaal University of Technology, Vanderbijlpark, South Africa

Abstract

This paper investigates Tectona grandis capped silver nanoparticle material effects on the microbial strains inducing microbiologically influenced corrosion (MIC) of metals. Leaf-extract from Tectona grandis natural plant was used as a precursor for the synthesis of silver-nanoparticle material, which was characterised by a scanning electron microscopy having Energy Dispersion Spectroscopy (SEM + EDS) facility. Sensitivity and resistance studies by the synthesized Tectona grandis capped silver nanoparticle material on three Gram-positive and three Gram-negative, thus totalling six, MIC inducing microbial strains were then studied and compared with what was obtained from a control antibiotic chemical. Results showed that all the microbial strains studied were sensitive to the Tectona grandis capped silver nanoparticle materials whereas two strains of microbes, a Gram-positive and a Gram-negative strain, were resistant to the commercial antibiotic chemical. These results suggest positive prospects on Tectona grandis capped silver nanoparticle usage in corrosion control/protection applications on metallic materials for the microbial corrosion environment.

Funder

The World Academy of Sciences

Publisher

Hindawi Limited

Subject

General Chemical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3