Affiliation:
1. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China
2. National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing 210098, China
Abstract
Considering the characteristics of complex nonlinear and multiple response variables of a super-high dam, kernel partial least squares (KPLS) method, as a strongly nonlinear multivariate analysis method, is introduced into the field of dam safety monitoring for the first time. A universal unified optimization algorithm is designed to select the key parameters of the KPLS method and obtain the optimal kernel partial least squares (OKPLS). Then, OKPLS is used to establish a strongly nonlinear multivariate safety monitoring model to identify the abnormal behavior of a super-high dam via model multivariate fusion diagnosis. An analysis of deformation monitoring data of a super-high arch dam was undertaken as a case study. Compared to the multiple linear regression (MLR), partial least squares (PLS), and KPLS models, the OKPLS model displayed the best fitting accuracy and forecast precision, and the model multivariate fusion diagnosis reduced the number of false alarms compared to the traditional univariate diagnosis. Thus, OKPLS is a promising method in the application of super-high dam safety monitoring.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献