Optimization Algorithm of Urban Rail Transit Network Route Planning Using Deep Learning Technology

Author:

Ma Yaqi1ORCID

Affiliation:

1. School of Transportation, Soochow University, Suzhou 215131, China

Abstract

Under the present background, optimizing the existing urban rail transit network is the focus of urban rail transit construction at present. Based on DL, this paper constructs the optimization algorithm of urban rail transit network route planning. According to the current urban layout and urban planning, build a suitable rail transit network line form; according to the function, the types of urban rail transit stations are divided, and the optimization of urban rail transit network lines is realized. In addition, according to the K short path algorithm, this paper calculates the effective path between any stations of rail transit and, according to the model, allocates the passenger flow to each path. Experimental results show that the accuracy of real-time traffic flow prediction by this algorithm can reach 94.98%, which is about 9% higher than other methods. This algorithm can effectively optimize the route planning of urban rail transit network. This verifies the effectiveness of the route planning optimization algorithm proposed in this paper. Using the algorithm in this paper for line planning can get good real time, rationality, and optimality.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3