Decoupling Technique Using Ferrite-Film Loading for 5G MIMO Applications

Author:

Wu Di1,Qiu Yang1,Yu Guoliang1,Guo Rongdi1,Wu Guohua1,Wang Jiawei2,Zhang Yi3,Zhu Mingmin14ORCID,Zhou Hao-Miao1ORCID

Affiliation:

1. Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province, College of Information Engineering, China Jiliang University, Hangzhou 310018, China

2. College of Science, Zhejiang University of Technology, Hangzhou 310023, China

3. Key Laboratory of Wireless Power Transmission of Ministry of Education, College of Electronics and Information Engineering, Sichuan University, Chengdu 610064, China

4. Center for X-Mechanics, Institute of Applied Mechanics, Zhejiang University, Hangzhou 310027, China

Abstract

Decreasing the mutual coupling between multiple-input-multiple-output (MIMO) antenna elements requires the selection of an appropriate decoupling technique without changing the geometry or operating frequency of the antenna. In this paper, a simple and flexible approach that involves loading a small ferrite film on the radiation patch of an MIMO antenna pair has been proposed to mitigate the unwanted mutual coupling. Through a thorough investigation, the two IFA elements with an element distance of only 1.4 mm can be decoupled adequately by properly controlling the ferrite-film loading area and the thickness of the ferrite film, along with maintaining the desired operating frequencies and acceptable radiation characteristics at the LTE Band 42 (3.4–3.6 GHz). The optimum ferrite-film loading on the grounding branch of the IFA element can increase the isolation from −6.64 dB to −10.43 dB and enhance the bandwidth from 3.20–3.88 GHz to 2.83–3.65 GHz, and its efficiency can reach to 45.5%, as well as a 2 dB gain. A physical model has also been established to interpret the operating mechanism of ferrite-film loading on the IFAs. The proposed simulated procedure is validated via measurements. This technique of ferrite loading on MIMO antennas can effectively decouple the mutual coupling at a low cost and with low design complexity, indicating its potential applicability for use in MIMO antennas in mobile handsets.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3