A Deep Q -Network-Based Collaborative Control Research for Smart Ammunition Formation

Author:

Shen Jian1ORCID,Zhang Benkang1ORCID,Zhu Qingyu2,Chen Pengyun1ORCID

Affiliation:

1. College of Mechatronics Engineering, North University of China, Taiyuan 030051, China

2. AVIC China Aero-Polytechnology Establishment, Beijing 100028, China

Abstract

The smart ammunition formation (SAF) system model usually has the characteristics of complexity, time variation, and nonlinearity. With the consideration of random factors, such as sensor error and environmental disturbance, the system model cannot be modeled accurately. To deal with this problem, this paper investigated an intelligent deep Q -network- (DQN-) based control algorithm for the SAF collaborative control, which deals with the high dynamics and uncertainty in the SAF flight environment. In the environment description of the SAF, we built a dynamic model to represent the system joint states, which referred to the smart ammunition’s velocity, the trajectory inclination angle, the ballistic deflection angle, and the relative position between different formation nodes. Next, we describe the SAF collaborative control process as a Markov decision process (MDP) with the application of the reinforcement learning (RL) technique. Then, the basic framework ε -imitation action-selecting strategy and the algorithm details were developed to address the SAF control problem based on the DQN scheme. Finally, the numerical simulation was carried out to verify the effectiveness and portability of the DQN-based algorithm. The average total reward curve showed a reasonable convergence, and the relative kinematic relationship among the formation nodes met the requirements of the controller design. It illustrated that the DQN-based algorithm obtained a novel performance in the SAF collaborative control.

Funder

Youth Science and Technology Research Fund, Shanxi Province Applied Basic Research Project

Publisher

Hindawi Limited

Subject

Aerospace Engineering

Reference36 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3