Green Synthesis of Gold Nanoparticles Using Extract of Pistacia chinensis and Their In Vitro and In Vivo Biological Activities

Author:

Alhumaydhi Fahad A.1ORCID

Affiliation:

1. Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia

Abstract

The synthesis of metal nanoparticles by using plant extracts is previously explored in phytomedicines. Nanobiotechnology has many applications, including cosmetic, packing, coating, biomedicine, and enhanced biological activity. Keeping in view the importance of Pistacia chinensis, its gold nanoparticles (AuNPs) have been synthesized by the eco-friendless and cost-effective method. In this study, the synthesized nanoparticles were characterized by advanced techniques such as UV-visible spectroscopy, Fourier transform infrared (FT-IR), and atomic force microscope (AFM) analysis. The biological activities of these synthesized nanoparticles were examined in vitro by measuring the enzymatic inhibition potential on urease and carbonic anhydrase and in vivo by determining the analgesic and sedative activities. The UV spectrum indicated various peaks at the range of 530-550 nm, showing nanoparticles formation. The FT-IR spectroscopy of the extracts and AuNPs indicated the presence of NH, C═N, and N═O in the extract involved in the nanoparticles synthesis. The size of nanoparticles was determined by AFM analysis. The AFM showed that the nanoparticles range from 10 to 100 nm and are almost spherical in shape. The synthesized AuNPs exhibited significant urease inhibition potential with an IC50 value of 44.98. Similarly, the nanoparticles exhibited good carbonic anhydrase inhibition with an IC50 value of 53.54 against acetazolamide having IC50 0.13. Pistacia chinensis extract and its AuNPs exhibited excellent attenuation p < 0.01 in acetic acid-induced writhing model at a dose of 15 mg/kg. The synthesized nanoparticles showed a significant sedative effect p < 0.001 compared to the standard drug. This research work has developed a green method to synthesize nanoparticles by using Pistacia chinensis extract and directed the researcher to purify active phytochemicals from Pistacia chinensis involved in nanoparticles synthesized.

Funder

Qassim University

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3