DeepFire: A Novel Dataset and Deep Transfer Learning Benchmark for Forest Fire Detection

Author:

Khan Ali1ORCID,Hassan Bilal2ORCID,Khan Somaiya3ORCID,Ahmed Ramsha4ORCID,Abuassba Adnan5ORCID

Affiliation:

1. College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua 321004, China

2. Department of Electrical Engineering and Computer Science, Khalifa University of Science and Technology, Abu Dhabi 127788, UAE

3. School of Electronics Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China

4. School of Computer and Communication Engineering, University of Science and Technology Beijing, 100083, China

5. Faculty of Engineering and Information Technology, Computer Science Department, An-Najah National University, Nablus 00972, State of Palestine

Abstract

Forest fires pose a potential threat to the ecological and environmental systems and natural resources, impacting human lives. However, automated surveillance system for early forest fire detection can mitigate such calamities and protect the environment. Therefore, we propose a UAV-based forest fire fighting system with integrated artificial intelligence (AI) capabilities for continuous forest surveillance and fire detection. The major contributions of the proposed research are fourfold. Firstly, we explain the detailed working mechanism along with the key steps involved in executing the UAV-based forest fire fighting system. Besides, a robust forest fire detection system requires precise and efficient classification of forest fire imagery against no-fire. Moreover, we have curated a novel dataset (DeepFire) containing diversified real-world forest imagery with and without fire to assist future research in this domain. The DeepFire dataset consists of 1900 colored images with 950 each for fire and no-fire classes. Next, we investigate the performance of various supervised machine learning classifiers for the binary classification problem of detecting forest fire. Furthermore, we propose a VGG19-based transfer learning solution to achieve improved prediction accuracy. We assess and compare the performance of several machine learning approaches such as k -nearest neighbors, random forest, naive Bayes, support vector machine, logistic regression, and the proposed approach for accurately identifying fire and no-fire images in the DeepFire dataset. The simulation results demonstrate the efficacy of the proposed approach in terms of accurate classification, where it achieves the mean accuracy of 95% with 95.7% precision and 94.2% recall.

Funder

Zhejiang Normal University

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3