West Nile Virus Vaccine Design by T Cell Epitope Selection: In Silico Analysis of Conservation, Functional Cross-Reactivity with the Human Genome, and Population Coverage

Author:

Waller Frances M.1,Reche Pedro A.2ORCID,Flower Darren R.1ORCID

Affiliation:

1. School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK

2. Immunomedicine Group, Facultad de Medicina, Departamento de Inmunologia & O2, Universidad Complutense de Madrid, Madrid, Spain

Abstract

West Nile Virus (WNV) causes a debilitating and life-threatening neurological disease in humans. Since its emergence in Africa 50 years ago, new strains of WNV and an expanding geographical distribution have increased public health concerns. There are no licensed therapeutics against WNV, limiting effective infection control. Vaccines represent the most efficacious and efficient medical intervention known. Epitope-based vaccines against WNV remain significantly underexploited. Here, we use a selection protocol to identify a set of conserved prevalidated immunogenic T cell epitopes comprising a putative WNV vaccine. Experimentally validated immunogenic WNV epitopes and WNV sequences were retrieved from the IEDB and West Nile Virus Variation Database. Clustering and multiple sequence alignment identified a smaller subset of representative sequences. Protein variability analysis identified evolutionarily conserved sequences, which were used to select a diverse set of immunogenic candidate T cell epitopes. Cross-reactivity and human leukocyte antigen-binding affinities were assessed to eliminate unsuitable epitope candidates. Population protection coverage (PPC) quantified individual epitopes and epitope combinations against the world population. 3 CD8+ T cell epitopes (ITYTDVLRY, TLARGFPFV, and SYHDRRWCF) and 1 CD4+ epitope (VTVNPFVSVATANAKVLI) were selected as a putative WNV vaccine, with an estimated PPC of 97.14%.

Funder

Aston University

Publisher

Hindawi Limited

Subject

Immunology,General Medicine,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3