Chaos Prediction in Fractional Delayed Energy-Based Models of Capital Accumulation

Author:

El-Borhamy Mohamed1ORCID,Medhat Tamer2,Ali Manal E.3

Affiliation:

1. Department of Engineering Mathematics and Physics, Faculty of Engineering, University of Tanta, Tanta, Egypt

2. Department of Electrical Engineering, Faculty of Engineering, University of Kafrelsheikh, Kafrelsheikh, Egypt

3. Department of Engineering Mathematics and Physics, Faculty of Engineering, University of Kafrelsheikh, Kafrelsheikh, Egypt

Abstract

This paper presents the nonlinear dynamic analysis of energy-based models arisen from the applied systems characterized by the energy transport in the presence of fractional order derivative and time delay. The studied model is the fractional version of Bianca-Ferrara-Dalgaard-Strulik (BFDS) model of economy which is viewed as a transport network for energy in which the law of motion of capital occurs. By considering the time delay as bifurcation parameter, a proof to investigate the existence of Hopf bifurcation and the phase lock solutions using the Poincare-Linstedt and the harmonic balance methods is given. At definite values of time delay, period-doubling bifurcations followed up by the consequences of chaotic states are detected. Simulation results assure that the BFDS model can generate new (hyper) chaotic attractors beyond half order derivatives through the effect of the time delay on that system. In accordance with the literatures related to the problem of chaos, the concluded results confirm the proposed theorem by El-Borhamy in which the time delay possesses the ability to change the dynamic state of nonlinear systems from regular to chaotic within the fractional order derivative domain.

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3