Large Margin Graph Embedding-Based Discriminant Dimensionality Reduction

Author:

Tian Yanjia12ORCID,Feng Xiang13ORCID

Affiliation:

1. Department of Computer Science and Engineering, East China University of Science and Technology, Shanghai, China

2. School of Electronics and Information, Shanghai DianJi University, Shanghai, China

3. Shanghai Engineering Research Center of Smart Energy, Shanghai, China

Abstract

Discriminant graph embedding-based dimensionality reduction methods have attracted more and more attention over the past few decades. These methods construct an intrinsic graph and penalty graph to preserve the intrinsic geometry structures of intraclass samples and separate the interclass samples. However, the marginal samples cannot be accurately characterized only by penalty graphs since they treat every sample equally. In practice, these marginal samples often influence the classification performance, which needs to be specially tackled. In this study, the near neighbors’ hypothesis margin of marginal samples has been further maximized to separate the interclass samples and improve the discriminant ability by integrating intrinsic graph and penalty graph. A novel discriminant dimensionality reduction named LMGE-DDR has been proposed. Several experiments on public datasets have been conducted to verify the effectiveness of the proposed LMGE-DDR such as ORL, Yale, UMIST, FERET, CMIU-PIE09, and AR. LMGE-DDR performs better than other compared methods, and the corresponding standard deviation of LMGE-DDR is smaller than others. This demonstrates that the evaluation method verifies the effectiveness of the introduced method.

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3