Experimental Study and Numerical Analysis on Impact Resistance of Civil Air Defense Engineering Shear Wall

Author:

Shi Chenglong1ORCID,Zhang Jigang12ORCID,Zhang Junbo1,Shao Feng3,Zhang Yicong1,Zhang Menglin1

Affiliation:

1. School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, China

2. Cooperative Innovation Center of Engineering Construction and Safety in Shandong Blue Economic Zone, Qingdao 266033, China

3. College of Architecture and Urban Planning, Qingdao University of Technology, Qingdao 266033, China

Abstract

In order to study the impact resistance of civil air defense engineering shear wall, the impact resistance of civil air defense engineering shear wall was studied by combining finite element numerical simulation with pendulum impact test. The effects of impact height, pendulum mass, and impact times on the impact resistance of civil air defense engineering shear walls were analyzed. It was shown that when the impact height increased from 0.4 m to 2.5 m, the failure mode of civil air defense engineering shear wall tended to be local impact failure, and the horizontal displacement in the middle of the wall span increased. The concrete crushing occurred in the impact area of the back of the civil air defense engineering shear wall. The increase in the impact height is a negative factor for the impact resistance of the civil air defense engineering shear wall. With the increase of pendulum weight, the number of concrete horizontal cracks in the back of the civil air defense engineering shear wall increased, while the number of vertical cracks decreased, but the impact surface was destroyed. Through multiple impact tests on the civil air defense engineering shear wall, the civil air defense engineering shear wall had accumulated damage. The longitudinally loaded steel on the back reached the ultimate strength, and there are large cracks at the bottom and even collapses. The increase of impact times has a great influence on the impact resistance of the civil air defense engineering shear wall. Through the analysis of the factors affecting the impact resistance of civil air defense engineering shear wall, it provides guidance for civil air defense engineering shear wall to resist impact load.

Funder

National Basic Research Program of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Reference37 articles.

1. Experimental and numerical investigation of reinforced concrete beams with variable material properties under impact loading

2. An experimental investigation on the effect of steel reinforcement on impact response of reinforced concrete plates

3. On the numerical modelling of bond for the failure analysis of reinforced concrete

4. Numerical simulation analysis of impact resistance of reinforced concrete wall;H. Su;Chinese Journal of High Pressure Physics,2020

5. Numerical simulation analysis for RC shear walls under impact load;W. Yi;Journal of Vibrayion and Shock,2019

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3