Development of a New Sequential Extraction Procedure of Nickel Species on Workplace Airborne Particulate Matter: Assessing the Occupational Exposure to Carcinogenic Metal Species

Author:

Simona Catalani1,Jacopo Fostinelli1ORCID,Maria Enrica Gilberti1,Francesca Orlandi1,Riccardo Magarini2,Matteo Paganelli1,Egidio Madeo1,Giuseppe De Palma1

Affiliation:

1. Unit of Occupational Health and Industrial Hygiene, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Italy

2. PerkinElmer (Italia), Milano, Italy

Abstract

Nickel (Ni) compounds and metallic Ni have many industrial and commercial applications, including their use in the manufacturing of stainless steel. Due to the specific toxicological properties of the different Ni species, there is a growing interest about the availability of analytical methods that allow specific risk assessment, particularly related to exposure to the Ni species classified as carcinogenic. In this paper, we described a speciation method of inorganic Ni compounds in airborne particulate matter, based on selective sequential extractions. The analytical method described in this paper allows the determination of soluble, sulfidic, metallic, and oxide Ni by a simple sequential extraction procedure and determination by Atomic Absorption Spectroscopy using small volumes of solutions and without long evaporation phases. The method has been initially set up on standard laboratory mixtures of known concentrations of different Ni salts. Then it has then been tested on airborne particulate matter (powder and filters) collected in different workstations of a large stainless steel production facility. The method has occurred effectively in the comparison of the obtained results with occupational exposure limit values set by the main international scientific and regulatory agencies for occupational safety and health, in order to prevent both toxic and carcinogenic effects in humans.

Funder

University of Brescia

Publisher

Hindawi Limited

Subject

Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3