Polysaccharides from Garlic Protect against Liver Injury in DSS-Induced Inflammatory Bowel Disease of Mice via Suppressing Pyroptosis and Oxidative Damage

Author:

Zhan Xinyi1ORCID,Peng Weijie1ORCID,Wang Zhuqiang1ORCID,Liu Xin1ORCID,Dai Weibo1ORCID,Mei Quanxi12ORCID,Hu Xianjing3ORCID

Affiliation:

1. Pharmacology Laboratory, Zhongshan Hospital, Guangzhou University of Chinese Medicine, Zhongshan 528401, China

2. Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen 518101, China

3. Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, And School of Pharmacy, Guangdong Medical University, Dongguan 523808, China

Abstract

Inflammatory bowel disease (IBD), a widespread intestinal disease threatening human health, is commonly accompanied by secondary liver injury (SLI). Pyroptosis and oxidative stress act as an important role underlying the pathophysiology of SLI, during which a large number of proinflammatory cytokines and oxidative intermediates can be produced, thereby causing the liver severely damaged. Suppression of pyroptosis and oxidative damage can be considered one of the critical strategies for SLI therapy. Garlic, a natural food with eatable and medicinal functions, is widely used in people’s daily life. There is no study about the alleviation of garlic against IBD accompanied with SLI. This study is aimed at investigating the efficacy of the polysaccharides from garlic (PSG) in treating IBD and SLI, as well as its pharmacological mechanism. The results showed that PSG significantly alleviated dextran sulfate sodium-induced IBD determined by evaluating the bodyweight loss, disease activity index, colon length, and colonic pathological examination of mice. PSG significantly reduced the colonic inflammation by reversing the levels of myeloperoxidase, diamine oxidase activity, iNOS, and COX2 and strengthened the intestinal barrier by increasing the expressions of ZO1, occludin, and MUC2 of IBD mice. Furthermore, PSG strongly alleviated SLI determined by assessing the liver morphological change, liver index, levels of ALT and AST, and liver pathological change of mice. Mechanically, PSG reduced the high levels of LPS, IL-1β, IL18, NLRP3, gasdermin D, caspase 1, ASC, TLR4, MyD88, NF-κB, phospho-NF-κB, while it increased IL-10 in the livers of mice, indicating that PSG alleviated SLI by suppressing inflammation and pyroptosis. Additionally, PSG significantly inhibited the oxidative damage in the liver tissues of SLI mice by reducing the levels of ROS, MDA, Keap-1, 8-OHDG, and phospho-H2AX and increasing the levels of GPX4, SOD2, HO1, NQO1, and Nrf2. These findings suggested that the garlic polysaccharides could be used to treat IBD accompanied with SLI in humans.

Funder

Guangdong Medical University Research Foundation

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3