Damage Evolution of Granite under Ultrasonic Vibration with Different Amplitudes

Author:

Han Junpeng1ORCID,Zhao Dajun1ORCID,Zhang Shulei2,Zhou Yu3

Affiliation:

1. College of Construction Engineering, Jilin University, Changchun 130026, China

2. Yellow River Survey, Planning and Design Institute Co Ltd, Zhengzhou, Henan 450003, China

3. Shaoxing University, Shaoxing, Zhejiang 312000, China

Abstract

As a type of ultra-high frequency loading, ultrasonic vibration is an effective way to break the rock at high rates. Exploring the influence of various factors on the loading effect is essential for its effective application to assist drilling. In this study, the damage evolution of granite under ultrasonic vibration with different amplitudes was investigated. The theoretical and numerical simulation models of rock breaking by ultrasonic vibration were established. The research group applied ultrasonic vibration loading to granite using different amplitudes. The damage characteristics were tested by NMR experiment, and the damage evolution was numerical analyzed by Particle Flow Code software. The result shows that the propagation of cracks is positively correlated with the amplitude of ultrasonic vibration. The increase of amplitude magnifies the generation of transverse cracks, which is conducive to the stripping of rock fragments. A threshold value was found for the amplitude, and fractures show different propagation and expansion characteristics at the higher and lower values. Increasing the amplitude magnifies the stress at the crystal defect and speeds up the crack propagation process. The stress wave generated by ultrasonic vibration inside the rock will attenuate with the increase in depth. Increasing the amplitude value will amplify the stress in the influence area, and decrease the size of the area.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3