A Novel Multimodal Biometric Person Authentication System Based on ECG and Iris Data

Author:

Ashwini K.ORCID,Keshava Murthy G. N.ORCID,Raviraja S.ORCID,Srinidhi G. A.ORCID

Abstract

Existing security issues like keys, pins, and passwords employed presently in almost all the fields that have certain limitations like passwords and pins can be easily forgotten; keys can be lost. To overcome such security issues, new biometric features have shown outstanding improvements in authentication systems as a result of significant developments in biological digital signal processing. Currently, the multimodal authentications have gained huge attention in biometric systems which can be either behavioural or physiological. A biometric system with multimodality club data from many biometric modalities increases each biometric system’s performance and makes it more resistant to spoof attempts. Apart from electrocardiogram (ECG) and iris, there are a lot of other biometric traits that can be captured from the human body. They include face, fingerprint, gait, keystroke dynamics, voice, DNA, palm vein, and hand geometry recognition. Electrocardiograms (ECG) have recently been employed in unimodal and multimodal biometric recognition systems as a novel biometric technology. When compared to other biometric approaches, ECG has the intrinsic quality of a person’s liveness, making it difficult to fake. Similarly, the iris also plays an important role in biometric authentication. Based on these assumptions, we present a multimodal biometric person authentication system. The projected method includes preprocessing, segmentation, feature extraction, feature fusion, and ensemble classifier where majority voting is presented to obtain the final outcome. The comparative analysis shows the overall performance as 96.55%, 96.2%, 96.2%, 96.5%, and 95.65% in terms of precision, F1‐score, sensitivity, specificity, and accuracy.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3