Seepage and Heat Transfer Characteristics of Gas Leakage under the Condition of CAES Air Reservoir Cracking

Author:

Wan Fa12ORCID,Jiang Zhong-Ming12ORCID

Affiliation:

1. School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410114, China

2. Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha 410114, China

Abstract

The contradiction between supply and demand of energy leads to more and more attention on the large-scale energy storage technology; Compressed Air Energy Storage (CAES) technology is a new energy storage technology that is widely concerned in the world. The research of coupled heat transfer and seepage in fractured surrounding rocks is the necessary basis to evaluate the operation safety and effectiveness of CAES. Current studies point to the possibility of cracking in concrete liner seals, but the thermodynamic processes and leakage characteristics of compressed air in the presence of cracking and the heat transfer characteristics of seepage have not been addressed and reported. In order to investigate the leakage, the gas seepage and heat transfer law in fractured rock when the hard rock CAES gas reservoir seal cracks, the COMSOL fracture Darcy module, and the non-Darcy Forchheimer model are used as the constitutive seepage. The global ODE is used to calculate the thermodynamic process of compressed air in gas storage with coupled seepage and heat transfer process. The pressure and temperature of compressed air are obtained as the unsteady boundary of the seepage heat transfer model. A program for calculating the seepage and heat transfer characteristics of fractured surrounding rock in the CAES gas reservoir is established. On this basis, with the proposed Suichang CAES cavern as the background, the seepage and heat transfer characteristics of the fractured surrounding rock of the gas storage are studied. The results showed that when there are fewer cracks in the lining and surrounding rock of the air reservoir, the air pressure decreases due to a small amount of air leakage after 30 operation cycles, and the leakage rate of each cycle is 0.7% of the gas storage capacity, but it still meets the engineering requirements. If the plant is operating under these conditions, the charging rate will need to be increased by 1.2 kg/s per cycle charging stage. In the discharging and power generation phase, the high-pressure air that previously percolated into the rock mass cracks could flow back into the air storage through the lining cracks. Therefore, it is incorrect and unreliable to consider the gas which flows out from the inner surface of the lining as unusable. When the lining crack width is less than 0.3 mm, the seepage flow is Darcy flow and the non-Darcy effect can be ignored; when the lining crack width is greater than 0.5 mm, the non-Darcy effect of seepage cannot be ignored. The gas velocity in the surrounding rock fracture medium is on the order of 0.01 m/s with an influence range of over 100 m, and the gas velocity in the pore medium is on the order of 10-6 m/s with an influence range of 50 m. The findings of this study contribute to a better understanding of the interaction between the thermodynamic properties of compressed air and the seepage heat transfer process in compressed air storage underground reservoirs, as well as the gas leakage process in the event of liner seal cracking.

Funder

Hunan Provincial Innovation Foundation for Postgraduate

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3