Affiliation:
1. Department of Chemistry and Biochemistry, University of Northern Colorado, Greeley, CO 80639, USA
2. Atrix Laboratories, Inc., 2579 Midpoint Drive, Fort Collins, CO 80522, USA
Abstract
We studied the temperature‒ and denaturant‒induced denaturation of yeast enolase by means of Fourier transform infrared spectroscopy. The temperature‒induced denaturation/aggregation of the enzyme in the absence of denaturant was highly cooperative and occurred between 55 and 65°C with a midpoint of ~58°C. Above 55°C, the intensity at 1656 cm−1(predominantly α‒helix) decreases as a function of temperature, accompanied by the appearance of two new bands at 1622 and 1696 cm−1, indicating the formation of intermolecular β‒sheet aggregates. Five clearly defined isosbestic points were observed, indicating a two‒state conformational transition. Addition of a non‒denaturing concentration of gdnHCl (0.4 M) caused the thermal denaturation/aggregation of the enzyme to proceed faster, but this revealed no unfolding intermediate. The gdnHCl‒induced unfolding was first detected at a gdnHCl concentration of above 0.4 M, evidenced by loss of α‒helix and β‒sheet structures as functions of denaturant concentration. The fully unfolded state was reached at a gdnHCl concentration of 1.6 M. A significant amount of intermolecular β‒sheet aggregate was detected at gdnHCl concentrations between 0.6 and 1.0 M, which disappeared as the denaturant concentration increased further. The gdnHCl‒unfolded state is a heterogeneous ensemble of turns, helix/loops, and random structures, which continues to change at higher concentrations of denaturant.
Funder
National Institutes of Health
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献