Enhancing Charge Transfer and Photoelectric Characteristics for Organic Solar Cells

Author:

Wang Xiaofei1,Pei Weiwei2,Li Yuanzuo1ORCID

Affiliation:

1. College of Science, Northeast Forestry University, Harbin, 150040 Heilongjiang, China

2. College of Science, Jiamusi University, 154001 Heilongjiang, China

Abstract

The main purpose of this work is to analyze the effect of steric hindrance on the photoelectric performance of three different donor sensitizers (ZHG5, ZHG6, and ZHG7) by molecular theory simulation engineering. Photoelectric physical and photoelectric chemical parameters are investigated by means of frontier molecular orbital, global reactivity descriptors, optical absorption properties, fluorescent lifetime, charge density difference, and influence of external electric field. The results showed that the performance of the quinoxaline sensitizer was deteriorated by gradually increasing the steric hindrance to auxiliary donors. The optical properties of the hybridization of cir-coronene graphene quantum dot (GR) with the three dyes have been revealed, and the results show that graphene quantum dots can indeed improve the optical properties of solar cells. In addition, nine new molecules were designed by inserting six functional groups; it is found that inserting -CN in the acceptor part of the molecular structure is beneficial to the performance of the sensitizer.

Funder

Heilongjiang Provincial Youth Science Foundation

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3