Stem Water Content for Crape Myrtle in Response to Drought, Cold, and Disease Stress

Author:

Gao Chao12ORCID,Zhao Yue34ORCID,Zhao Yandong34ORCID

Affiliation:

1. School of Computer and Information Engineering, Beijing Technology and Business University, Beijing 100048, China

2. Beijing Key Laboratory of Big Data Technology for Food Safety, Beijing Technology and Business University, Beijing 100048, China

3. School of Technology, Beijing Forestry University, Beijing 100083, China

4. Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Municipal Education Commission, Beijing 100083, China

Abstract

The abiotic and biotic stresses including drought, cold, and disease stress are linked by the fact that they all decrease the availability of water to plant cells. In previous studies, some physiological factors related with plant water status, such as stem sap flow, leaf transpiration rate, and water potential, were used to assess the effects of these stresses on plants. But there are few studies about the effects of these stresses on stem water content (StWC) which can be measured by a novel SWR sensor. In this study, crape myrtle was selected as an experimental subject and its StWC was observed in four experiments including no stress, drought, cold, and disease stress. Before conducting stress experiments, the StWC and environmental and physiological parameters were synchronously monitored under unstressed conditions on a typical day in summer. In the experiment of drought stress, the StWC was monitored under different gradients of soil moisture. In the experiment of cold stress, the StWC was monitored in warm and cold weather, respectively. In the experiment of disease stress, the StWC was monitored under different frequencies of disease treatment. The results showed that the correlation coefficients between StWC and PAR and VPD were larger than 0.5 and the correlation coefficients between StWC and Pn, Tr, Gs, and Ci were larger than 0.8 under no stress. The diurnal mean of StWC decreased firstly, then remained stable for a period of time, and eventually continued to fall under drought stress. On the whole, there was a negative correlation between the diurnal mean of StWC and the degree of drought stress. The StWC showed opposite diurnal variation rules in warm and cold weather. There was a positive correlation between the diurnal range of StWC and the degree of cold stress. The diurnal minimum, maximum, and mean of StWC showed a positive correlation with the health level of plants and the diurnal range of StWC showed a negative correlation with the health level of plants. In conclusion, the StWC can be used as a qualitative evaluation index of the degree of the three types of stress.

Funder

Special Fund for Beijing Common Construction Project

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3