Stayed-Cable Bridge Damage Detection and Localization Based on Accelerometer Health Monitoring Measurements

Author:

Kaloop Mosbeh R.12,Hu Jong Wan13

Affiliation:

1. Department of Civil and Environmental Engineering, Incheon National University, 12-1 Songdo-dong, Yeonsu-gu, Incheon 406-840, Republic of Korea

2. Department of Public Works and Civil Engineering, Mansoura University, Mansours 35516, Egypt

3. Incheon Disaster Prevention Research Center, Incheon National University, 12-1 Songdo-dong, Yeonsu-gu, Incheon 406-840, Republic of Korea

Abstract

In situ damage detection and localization using real acceleration structural health monitoring technique are the main idea of this study. The statistical and model identification time series, the response spectra, and the power density of the frequency domain are used to detect the behavior of Yonghe cable-stayed bridge during the healthy and damage states. The benchmark problem is used to detect the damage localization of the bridge during its working time. The assessment of the structural health monitoring and damage analysis concluded that (1) the kurtosis statistical moment can be used as an indicator for damage especially with increasing its percentage of change as the damage should occur; (2) the percentage of change of the Kernel density probability for the model identification error estimation can detect and localize the damage; (3) the simplified spectrum of the acceleration-displacement responses and frequencies probability changes are good tools for detection and localization of the one-line bridge damage.

Funder

Ministry of Science, ICT and Future Planning

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3