Online State of Charge Estimation of Lithium-Ion Cells Using Particle Filter-Based Hybrid Filtering Approach

Author:

Zhang Ming1ORCID,Wang Kai1ORCID,Zhou Yan-ting1ORCID

Affiliation:

1. College of Electrical Engineering, Qingdao University, Qingdao 266071, China

Abstract

Filtering based state of charge (SOC) estimation with an equivalent circuit model is commonly extended to Lithium-ion (Li-ion) batteries for electric vehicle (EV) or similar energy storage applications. During the last several decades, different implementations of online parameter identification such as Kalman filters have been presented in literature. However, if the system is a moving EV during rapid acceleration or regenerative braking or when using heating or air conditioning, most of the existing works suffer from poor prediction of state and state estimation error covariance, leading to the problem of accuracy degeneracy of the algorithm. On this account, this paper presents a particle filter-based hybrid filtering method particularly for SOC estimation of Li-ion cells in EVs. A sampling importance resampling particle filter is used in combination with a standard Kalman filter and an unscented Kalman filter as a proposal distribution for the particle filter to be made much faster and more accurate. Test results show that the error on the state estimate is less than 0.8% despite additive current measurement noise with 0.05 A deviation.

Funder

Department of Science and Technology of Shandong Province

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3