Affiliation:
1. M.L.V. Govt. Textile & Engineering College, Bhilwara, Rajasthan, India
2. Rajasthan Technical University, Kota, Rajasthan, India
Abstract
This article presents a multiband antenna with the implementation of a metamaterial split-ring resonator (SRR), quasicomplementary split-ring resonator (CSRR), and slots to achieve octaband characteristics for wireless standards. Multiband features are accomplished by the implementation of the slot approach within the radiating section part and loading the SRR and CSRR cells. The electrical dimension is 0.256λ × 0.176 λ × 0.0128λ (32 × 22 × 1.6 mm3) of the proposed design, at a lower frequency of 2.4 GHz. The proposed design indicates the frequency-band reconfigurability nature by using the switching PIN diode placed at the slotted section of the ground plane. During the OFF state of switching, the element structure resonates in eight wireless communication bands covering various high-speed multiple applications of Internet of Things (IoT) regarding wireless standards S-band WLAN (WiFi, Bluetooth, Z-wave, wireless HART, and WBAN), lower C-band (WAIC, satellite communication transmission application), C-band WLAN, X-band (ITU region 2), Ku-band (direct broadcast satellite system and terrestrial microwave communication system service), and K-band (radar communication application) at 2.4, 4.3, 5.8, 8.5, 11.1, 13.9, 16.1, and 18.9 GHz, respectively, with S11 ≤ −10 dB. The antenna achieves an optimum peak gain of 4.23 dBi and radiation efficiency of 82.78% at operating frequency regarding wireless standards. The average efficiency of the proposed design is more than 70% for all resonant modes. The radiation characteristics (gain/efficiency/patterns/impedance matching) are shown in the stable and improved form at achieved wireless modes.
Subject
Electrical and Electronic Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献