In-Line and Cross-Flow Coupling Vibration Response Characteristics of a Marine Viscoelastic Riser Subjected to Two-Phase Internal Flow

Author:

Chang Xueping12ORCID,Fan Jinming1,Yang Wenwu1,Li Yinghui2ORCID

Affiliation:

1. School of Mechatronic Engineering, Southwest Petroleum University, Chengdu 610500, China

2. School of Mechanics & Engineering, Southwest Jiaotong University, Chengdu 610031, China

Abstract

This paper studies the in-line and cross-flow coupling vibration response characteristics of a marine viscoelastic riser subjected to two-phase internal flow and affected by the combined effects of several parameters including the volume fraction of gas phase, sea water flow velocity, viscoelastic coefficient of the marine riser, axial tension amplitude, and the in-line and cross-flow coupling effect taking into account both the geometric and hydrodynamic nonlinearities. On the base of extended Hamilton’s principle for open systems, the dynamic equations of the marine viscoelastic riser subjected to the axial tension and gas-liquid-structure interaction are established. Two distributed and coupled van der Pol wake oscillators are utilized to model the fluctuating lift and drag coefficients, respectively. The finite element method is adopted to directly solve the highly coupled nonlinear fluid-structure interaction equations. Model validations are firstly performed through comparisons with the published experimental data and numerical simulation results, and the characteristic curves of the in-line and cross-flow vibration pattern, the in-line and cross-flow displacement trajectories, the in-line and cross-flow space-time response of displacement, and the in-line and cross-flow space-time response of stress versus different parameters are obtained, respectively. The results show that the volume fraction of gas phase, sea water flow velocity, viscoelastic coefficient of marine riser, axial tension amplitude, the in-line and cross-flow coupling effect, and multiphase internal flow velocity have significant influences on the dynamic response characteristics of the marine viscoelastic riser. Furthermore, the maximum displacements and stresses of the marine viscoelastic riser can be increased or decreased depending on the internal flow velocity, and the critical internal flow velocities result in the increase of mode order for different cross-flow velocities. It is also demonstrated that appropriate viscoelastic coefficients are very important to effectively suppress the maximum displacements and stresses.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3