4-Nitroaniline Degradation by TiO2Catalyst Doping with Manganese

Author:

Zheng Kai12,Zhang Tong-chao1,Lin Pin1,Han Yu-hua1,Li Hong-yi1,Ji Ren-jie1,Zhang Hai-yun1

Affiliation:

1. Department of Environmental Engineering, Nanjing Institute of Technology, Nanjing 211167, China

2. Jiangsu Key Laboratory of Industrial Water-Conservation and Emission Reduction, Nanjing Technology University, Nanjing 211816, China

Abstract

Stainless steel anode covered with layer film of TiO2doped with manganese was utilized to decompose 4-nitroaniline in rectangular borosilicate glass reactor, while stainless steel mesh was chosen as cathode; the anode and cathode were connected to the direct-current power; meantime two 60 W (λmax= 365 nm) UV lamps were used as light source. The microstructures on TiO2before and after being doped with manganese were analyzed by energy disperse X-ray (EDX) and X-ray diffraction (XRD). The performance of degradation of 4-nitroaniline was evaluated by analyzing cracking ratio of 4-nitroaniline ring, the chemical oxygen demand (COD), and total organic carbon (TOC) in remaining solution. Monitored parameters during all the photocatalytic reaction including dissolved oxygen, direct voltage, and radiation dosage of ultraviolet rays were investigated. When dissolved oxygen concentration, direct voltage, and radiation dosage of ultraviolet rays were, respectively, equivalent to 9 mg/L, 24 V, and 1200 μW/cm2, the degradation ratio of 4-nitroaniline reached maximum. The experimental results indicated that cracking ratio of 4-nitroaniline ring and the removal ratio of COD and TOC were, respectively, more than 99%, 85%, and 80% when reaction was run for 10 hours. The values of COD and TOC were, respectively, less than 16 mg/L and 8 mg/L while the experiment was finished.

Funder

New Technology Research and Development Fund of P.R. Environmental Protection Department of Jiangsu Province

Publisher

Hindawi Limited

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3