Affiliation:
1. King Abdullah II School for Information Technology, The University of Jordan, Amman, Jordan
Abstract
A multiagent system (MAS) is a mechanism for creating goal-oriented autonomous agents in shared environments with communication and coordination facilities. Distributed data mining benefits from this goal-oriented mechanism by implementing various distributed clustering, classification, and prediction techniques. Hence, this study developed a novel multiagent model for distributed classification tasks in cancer detection with the collaboration of several hospitals worldwide using different classifier algorithms. A hospital agent requests help from other agents for instances that are difficult to classify locally. The agents communicate their beliefs (calculated classification), and others decide on the benefit of using such beliefs in classifying instances and adjusting their prior assumptions on each class of data. A MAS model state and behavior and communication are then developed to facilitate information sharing among agents. Regarding accuracy, implementing the proposed approach in comparison with typically different noncommunicated distributed classifications shows that sharable information considerably increases the classification task accuracy by 25.77%.
Subject
General Engineering,General Mathematics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献