Interaction between an Eco-Spiral Bolt and Crushed Rock in a Borehole Evaluated by Pull-Out Testing

Author:

Kang Seong-Seung1ORCID,Hirata Atsuo2,Jang Bo-An3,Seo Yong-Seok4,Kim Daehyeon5ORCID

Affiliation:

1. Department of Energy and Resources Engineering, Chosun University, Gwangju 61452, Republic of Korea

2. RS Technology Co., Ltd. and Sojo University, Kumamoto 862-0941, Japan

3. Department of Geophysics, Kangwon National University, Chuncheon 24341, Republic of Korea

4. Department of Earth and Environment Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea

5. Department of Civil Engineering, Chosun University, Gwangju 61452, Republic of Korea

Abstract

The interactions between an eco-spiral bolt and crushed rocks in a borehole were evaluated by pull-out testing in a laboratory and numerical analysis. The porosity of the crushed rock surrounding the bolt depended on the size of the eco-spiral bolt and affected the eco-spiral bolt’s axial resistance force. The axial resistance force and the porosity of the crushed rocks in the borehole showed an inverse relationship. The porosity was also related to the size of the eco-spiral bolt. The maximum principal stress between the bolt and the rock was related to the porosity of the crushed rock and the size difference between the eco-spiral bolt and the borehole. At low porosity the experimental and numerical analyses show similar relationships between the axial resistance force and the displacement. However, at high porosity, the numerical results deviated greatly from the experimental observation. The initial agreement is attributed to the state of residual resistance after the maximum axial resistance force, and the latter divergence was due to the decreasing axial resistance force owing to slippage.

Funder

Ministry of Land, Infrastructure and Transport

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3