Ex Vivo Expansion of Human Limbal Epithelial Cells Using Human Placenta-Derived and Umbilical Cord-Derived Mesenchymal Stem Cells

Author:

Nam Sang Min1ORCID,Maeng Yong-Sun2ORCID,Kim Eung Kweon34ORCID,Seo Kyoung Yul3ORCID,Lew Helen1ORCID

Affiliation:

1. Department of Ophthalmology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea

2. Department of Obstetrics and Gynecology, Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea

3. Department of Ophthalmology, Institute of Vision Research, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea

4. Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea

Abstract

Ex vivo culture of human limbal epithelial cells (LECs) is used to treat limbal stem cell (LSC) deficiency, a vision loss condition, and suitable culture systems using feeder cells or serum without animal elements have been developed. This study evaluated the use of human umbilical cord or placenta mesenchymal stem cells (C-MSCs or P-MSCs, resp.) as feeder cells in an animal/serum-free coculture system with human LECs. C-/P-MSCs stimulated LEC colony formation of the stem cell markers (p63, ABCG2) and secreted known LEC clonal growth factors (keratinocyte growth factor, β-nerve growth factor). Transforming growth factor-β-induced protein (TGFBIp), an extracellular matrix (ECM) protein, was produced by C-/P-MSCs and resulted in an increase in p63+ ABCG2+ LEC colonies. TGFBIp-activated integrin signaling molecules (FAK, Src, and ERK) were expressed in LECs, and TGFBIp-induced LEC proliferation was effectively blocked by a FAK inhibitor. In conclusion, C-/P-MSCs enhanced LEC culture by increasing growth of the LSC population by secreting growth factors and the ECM protein TGFBIp, which is suggested to be a novel factor for promoting the growth of LECs in culture. C-/P-MSCs may be useful for the generation of animal-free culture systems for the treatment of LSC deficiency.

Funder

Ministry of Health & Welfare, Republic of Korea

Publisher

Hindawi Limited

Subject

Cell Biology,Molecular Biology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3