Affiliation:
1. Bridge Engineering Department, Southwest Jiaotong University, Chengdu 610031, China
Abstract
In the ensemble empirical mode decomposition (EEMD) algorithm, different realizations of white noise are added to the original signal as dyadic filter banks to overcome the mode mixing problems of empirical mode decomposition (EMD). However, not all the components in white noise are necessary, and the superfluous components will introduce additional mode mixing problems. To address this problem, morphological filter-assisted ensemble empirical mode decomposition (MF-EEMD) was proposed in this paper. First, a new method for determining the structuring element shape and size was proposed to improve the adaptive ability of morphological filter (MF). Then, the adaptive MF was introduced into EMD to remove the superfluous white noise components to improve the decomposition results. Based on the contributions of MF in a single EMD process, the MF-EEMD was proposed by combining EEMD with MF to suppress the mode mixing problems. Finally, an analog signal and a measured signal were used to verify the feasibility of MF-EEMD. The results show that MF-EEMD significantly mitigates the mode mixing problems and achieves a higher decomposition efficiency compared to that of EEMD.
Funder
National Key R&D Program of China
Subject
General Engineering,General Mathematics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献